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Abstract

A new method to solve radiation transfer equations is presented. In the absence of scattering, material motion, and heat
conduction, the photon variables can be eliminated from the fully implicit, multi-group, discrete-ordinate, finite difference
(finite element) equations of continuum radiation transfer to yield a smaller set of equations which depends only on tem-
perature. The solution to this smaller set of equations is used to generate the solution to the original set of equations from
which the reduced set is derived. The reduced system simplifies to a nonlinear heat equation in the regime of strong absorp-
tion and strong emission. We solve the reduced set of equations by the Newton-GMRES method in which the Jacobian
update is preconditioned by a linearization of this nonlinear heat equation. The performances of this new method and of
the semi-implicit linear method, which is preconditioned by grey transport acceleration combined with diffusion synthetic
acceleration, are compared on two test problems. The test results indicate that the new method can take larger time steps,
requires less memory, is more accurate, and is competitive in speed with the semi-implicit linear method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Conventional deterministic methods [3,18,26,28] for radiative transfer simulations solve not the nonlinear
equations of continuum radiative transfer, but solve the semi-implicit linear approximation (SiL) [18] of these
equations. Since the linear equations of the SiL approximation merge into the nonlinear equations of radiative
transfer as the time step is decreased, simulations by conventional methods are accurate for small time incre-
ments. However, for larger time steps, as we shall see, the SiL approximation may yield solutions which are
outside of the bounds permitted by the nonlinear equations; these bounds were derived by Amdreev et al. [5].
This unphysical behavior of the SiL approximation is unexpected, since the time derivatives of its equations
are implicitly differenced. Furthermore, since this unphysical behavior was proved by Amdreev et al. [5] to be
absent in the solutions of the implicitly differenced, multi-group, discrete-ordinate, finite difference nonlinear
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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equations of radiative transfer, the goal of this paper is to demonstrate that these equations can be solved
without the simplifying assumptions of the SiL approximation.

We solve this discrete system with Newton’s method [16], not by plugging it as is into Newton’s method, since
its sheer size is daunting, but by deriving from it a smaller but equivalent set of equations which is then plugged
into Newton’s method. The equations of continuum radiation transfer consist of two coupled sub-systems: a
transport equation for the intensity w, and a material equation for the temperature T. Hence, the number of
unknowns in a discretization of these equations is of the order of ng · nd · nx, where ng is the number of groups,
nd is the number of directions, and nx is the number of zones. As we shall see, this coupled system can be trimmed
down to a manageable size by eliminating the intensity from the system, leaving behind a material-like equation
for the temperature, which is then solved by Newton’s method. Since the material-like equation consists of nx

unknowns, Newton’s method can solve this reduced system more efficiently than the underlying system from
which the reduced system is derived. This idea of deriving a reduced system is borrowed from the symbolic impli-
cit Monte-Carlo (SIMC) method [7,25,27], but, unlike the SIMC method, our method is deterministic.

There is a potential roadblock in Newton’s method; it requires the inversion of a non-symmetric matrix
known as the Jacobian. We clear this barrier for iterative inversion methods by deriving in Section 3 a pre-
conditioner for the Jacobian from the large cross section limit of the material-like temperature equation. In
this limit, the material-like equation simplifies to a nonlinear heat equation, which when linearized yields a
preconditioner. Results presented in Section 4 on the inversion of the Jacobian by the GMRES method
[30] show the accelerating effect of this preconditioner.

A reduced system is also derived by the SiL approximation. Unlike our approach, the SiL approximation
eliminates the temperature from the coupled sub-systems to yield a transport-like equation for the intensity.
However, this approach, as shown in Section 5, requires two approximations: the coefficients of the sub-sys-
tems are frozen within a time step, and the black body emission function is approximated. Both approxima-
tions1 are also employed to eliminate the temperature from the coupled subsystems by the implicit Monte-
Carlo (IMC) [14] method. The unphysical behavior of the SiL approximation for large time steps discussed
above was also observed by Larsen and Mercier [19] in the IMC results for large time steps. On the other hand,
the elimination of the photon variables from the sub-systems requires no approximation beyond discretiza-
tion. The reason, which will become clearer in Section 2, is because we can solve the photon equation, an equa-
tion which is linear in w but is nonlinear in T, for the intensity in the usual way with a sweeping operator
whose coefficients are nonlinear functions of temperature. We can then substitute the result into the material
equation to yield an equation that depends solely on temperature. As we shall see in the test results of Section
4, the absence of these two approximations enables our method to take time steps that are considerably larger
than the time steps that the SiL method can take stably.
2. The multi-group and the discrete-ordinate approximation for radiative transfer

For clarity of exposition, we restrict our discussion to slab geometry and local thermodynamic equilibrium.
In the absence of scattering, material motion, and heat conduction, the multi-group, discrete-ordinate equa-
tions of radiative transfer, Section VII.C of [2], consist of the transport equation,
1 Th
1

c

owg;d

ot
þ ld

owg;d

ox
þ rgðT Þwg;d ¼ rgðT ÞBgðT Þ þ sg;d ;

g ¼ 1; . . . ; ng;

d ¼ 1; . . . ; nd ;
and the material equation,
CpðT Þ
oT
ot
¼
Xng

g¼1

Xnd

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q;
where
BgðT Þ ¼
Z m

gþ1
2

m
g�1

2

4phm3

c2

e�hm=kT

1� e�hm=kT
dm; ð2:1Þ
e approximation of the black body emission function is of O(DT) in the IMC method but is of O((DT)2) in the SiL approximation.
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is the group integrated2 Planck function,
2 No
CpðT Þ ¼ qðT ÞCvðT Þ;

is the product of the mass density q(T) and the heat capacity at constant volume Cv(T), and {wd} is the set of
quadrature weights that sums to 2. In these equations, c is the speed of light, h is Planck’s constant, k is Boltz-
mann’s constant, g is the group index, d is the direction index, rg(T) is the group averaged cross section, sg,d is
a frequency and direction dependent external radiation source, and q is an external heat source.

If the system is discretized by the backward Euler Method, and if the superscript n represents the beginning
of a time step and the absence of a superscript represents the end of a time step, we have
ld

owg;d

ox
þ rgðT Þ þ

1

cDtn

� �
wg;d ¼ rgðT ÞBgðT Þ þ sg;d þ

wn
g;d

cDtn
;

CpðT Þ
T � T n

Dtn
¼
Xng

g¼1

Xnd

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:
The streaming operator can be discretized by many finite element or finite difference techniques, e.g. the Pet-
rov–Galerkin method [15], the Diamond Difference method [11], the Discontinuous Galerkin method [29], the
Corner Balance method [1], the Linear Discontinuous method [17], the Weighted Diamond Difference method
[6], etc. As a result of the discretization, the spatial derivative can be expressed as a matrix, which we denote as
D, and the boundary conditions can be expressed as a source term, which we denote as bg,d. Each discretiza-
tion, however, lays out w on a mesh in its own way. For some discretizations, w is node centered, for others, w
is zone centered and face centered, and for a few, w is both. For the sake of clarity, let the discretization of the
spatial derivative be zone centered. Although such a discretization is highly inaccurate and is highly unlikely to
be used in a simulation, this choice simplifies our presentation. Assuming that wg,d,T, the external sources, and
the boundary condition bg,d are zone centered arrays, that D is a matrix that operates on zone centered arrays,
and that rg(T) and CP(T) are from here on diagonal matrices whose entries are nonlinear functions of T, the
discrete system of nonlinear equations can be written as:
ðldDþ rgðT Þ þ ðcDtnÞ�1IÞwg;d ¼ rgðT ÞBgðT Þ þ sg;d þ ðcDtnÞ�1wn
g;d þ bg;d ;

CpðT Þ
T � T n

Dtn
¼
Xng

g¼1

Xnd

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:
ð2:2Þ
Let us introduce notation for solving system (2.2). If we define the nonlinear function Gðw; T Þ as the left-hand
side (l.h.s.) of (2.2) minus the right-hand side (r.h.s.) of (2.2), then system (2.2) can be written as Gðw; T Þ ¼ 0.
We define the solution of (2.2) as the set of wg,d’s and the T, which when substituted into Gðw; T Þ yields 0. If an
arbitrary set of wg,d’s and an arbitrary T are substituted into Gðw; T Þ we define the non-zero result as the non-
linear residual. Thus, the solution of (2.2) is the set of wg,d’s and the T which yield a zero nonlinear residual.
The goal of an iterative method is to reduce the nonlinear residual Gðw; T Þ with each iteration.

There are two main strategies for reducing the nonlinear residual Gðw; T Þ. The first, taken by conventional
deterministic methods [3,18,26,28], is to linearize system (2.2), and then eliminate the temperature from the
linearized system to give a transport equation with an additional scattering term. The other strategy for reduc-
ing the nonlinear residual is to solve the first equation of (2.2) for the intensity and then substitute the intensity
into the material equation. This approach is taken by the SIMC method. It is also the approach that would be
taken by a linear algebraist, if (2.2) were a linear system. A linear algebraist would solve the first equation of
(2.2) for the intensity, and then substitute the intensity into the second equation of (2.2), leaving behind the
Schur Complement [30] of (2.2).

The matrix of the l.h.s. of the first equation of (2.2) is easy to invert, because it does not have scattering. If
we define that matrix as
Hg;dðT Þ � ldDþ rgðT Þ þ ðcDtnÞ�1I ; ð2:3Þ
rmalization of BmðT Þ :
R1

0 dm
R 1
�1 dl 4phm3

c2
e�hm=kT

1�e�hm=kT ¼ 8p5k4T 4

15h3c2 .
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define the last three terms on the r.h.s. of the first equation of (2.2) as
3 Th
4 Sin

sweep.
f n
g;d � sg;d þ ðcDtnÞ�1wn

g;d þ bg;d ;
substitute the solution of the first equation of (2.2) into the second equation of (2.2), and multiply the result by
Dtn, then we have the discrete analog of the SIMC temperature equation,
CpðT ÞðT � T nÞ ¼
Xng ;nd

g;d¼1

DtnrgðT ÞwdðH�1
g;dðrgðT ÞBgðT Þ þ f n

g;dÞ � BgðT ÞÞ þ qDtn: ð2:4Þ
The matrix, H�1
g;d , in (2.4) is known as the sweeping operator in transport theory. The product,

H�1
g;d � rgðT ÞBgðT Þ, is operationally equivalent to a matrix-vector product.
If we can find the T that solves (2.4), then we also have the solution to the underlying system (2.2). The

reason is because if we substitute the T that solves (2.4) into the first equation of (2.2), then we can complete
the solution of (2.2) by back-solving the first equation of (2.2) for the intensity wg,d. Let us introduce notation
for solving (2.4). If we define, FðT Þ, as the nonlinear residual of (2.4),
FðT Þ � CpðT ÞðT � T nÞ �
Xng ;nd

g;d¼1

DtnrgðT ÞwdðH�1
g;dðrgðT ÞBgðT Þ þ f n

g;dÞ � BgðT ÞÞ � qDtn;
then (2.4) can be written as:
FðT Þ ¼ 0: ð2:5Þ

Nonlinear solvers for (2.5) require the evaluation of FðT Þ, which is facilitated by the first equation of (2.2),
H g;dðT Þwg;d ¼ rgðT ÞBgðT Þ þ f n
g;d ; ð2:6Þ
written in matrix form. For the iterate, Tk, it is straightforward to evaluate the terms Cp(Tk), rg(Tk), and

Bg(Tk) of FðT kÞ. The term, H�1
g;d rðT kÞBgðT kÞ þ f n

g;d

� �
, is determined by solving the transport equation,

Hg;dðT kÞwg;d ¼ rgðT kÞBgðT kÞ þ f n
g;d .

3. Newton-GMRES method for solving the temperature equation

The Newton-GMRES method for solving (2.5) is Newton’s method for systems in which the Jacobian of
FðT Þ is inverted by the GMRES method [30]. Newton’s method starts with an initial guess, T0, and finds the
next iterate by solving a linear system. Let the subscript k be the index of the current iterate, then the linear
system that determines the next iterate in Newton’s method is
FðT kÞ þ JðT kþ1 � T kÞ ¼ 0;
where
J � oF

oT

����
T k

;

is the matrix formed by the partial derivatives of F evaluated at Tk. Inverting J by the GMRES method, we
have
T kþ1 ¼ T k � J�1FðT kÞ:

The inversion of J for solving the linear system, Jx = b, by the GMRES method requires a function that

returns the action of J on an arbitrary vector z. We provide in Appendix 1 a matrix-free formula for comput-
ing Jz. However, that matrix-free formula, which requires two sweeps to compute Jz is more expensive than
the following forward difference quotient formula3, which requires one4 sweep to compute Jz,
e error in the forward quotient approximation and its effect on the efficiency of Newton’s method is discussed in [9] and [16].
ce FðT kÞ is known from the last iterate and can be stored in memory, the work to evaluate the forward difference formula is a single
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Jz �FðT k þ �zÞ �FðT kÞ
�

;

where � is a small number. Hence, for practical reasons, we compute Jz by the above approximation.

3.1. Initial guess

Since a nonlinear solver with line searching logic does not require an accurate initial guess to converge [16],
we take Tn, the temperature at the beginning of a time step, to be our initial guess. However, since an accurate
initial guess may improve the efficiency of the solver, we provide in Appendix 2 an approximate solution for
FðT Þ ¼ 0, which can serve as an initial guess.

3.2. A heat conducting preconditioner

Newton’s method is as effective as its linear preconditioner. If the time step and the cross section are both
large, then, as shown below, J is nearly singular. Furthermore, the condition number of J grows as the cross
section increases. Since an unpreconditioned iterative inversion of a matrix decelerates as the condition num-
ber of the matrix increases, then the importance of the preconditioning of J increases with increasing cross
section magnitude. It is easy to derive an effective preconditioner for oFðT Þ=oT in the regime of vanishing
cross section, because, by (2.4), FðT Þ ! CP ðT ÞðT � T nÞ � qDtn in this limit. It is also easy to derive an effective
preconditioner in the regime of large cross section, because, in this limit, FðT Þ ¼ 0 simplifies to a nonlinear
heat conduction equation.

Let us derive the large cross section limit of FðT Þ ¼ 0 from (2.4). When rg(T) is large, the sweeping oper-

ator H�1
g;d , see (2.3), can be approximated by the three term Neumann series5,
H�1
g;d � ðI þ ~r�1

g ldDÞ�1~r�1
g ¼ ðI � ~r�1

g ldDþ ð~r�1
g ldDÞ2 þ � � �Þ~r�1

g ;
where ~rg � rgðT Þ þ ðcDtnÞ�1I . When this series is substituted into (2.4), the identities,
Pnd

d¼1wd ¼ 2;Pnd
d¼1wdld ¼ 0, and

Pnd
d¼1wdl2

d ¼ 2=3, enable us to collapse the sums with respect to the direction index d in
(2.4). The steps to collapse these sums are: right multiply the above series by rg(T), subtract I from the prod-
uct, multiply the difference by wd, and sum the product with respect to d. The result is
Xnd

d¼1

wdðH�1
g;drgðT Þ � 1Þ � 2~r�1

g � 1

cDtn
I þ D

1

3~rg
D~r�1

g rgðT Þ
� �

:

Substituting the above formula into (2.4), we have the nonlinear heat equation
CpðT Þ
T � T n

Dtn
¼ 2

Xng

g¼1

rgðT Þ~r�1
g � 1

cDtn
I þ D

1

3~rg
D~r�1

g rgðT Þ
� �

BgðT Þ þ q̂; ð3:1Þ
where q̂ ¼ qþ
Png ;nd

g;d¼1rgðT ÞwdH�1
g;df n

g;d : Since (3.1) is the large cross section limit of FðT Þ ¼ 0, we can derive a
preconditioner (at the most current temperature) for oFðT Þ=oT by differentiating (3.1) with respect to T.
However, as found in diffusive radiation transport [10,21,23], a preconditioner can be effective even if its coef-
ficients are lagged. To lag Cp(T) and rg(T) of the preconditioner is to evaluate them at Tn, the temperature at
the beginning of the time step. In fact, the preconditioner is updated only once every few time steps in the
Newton solvers of some diffusive radiation transport codes [10]. The preconditioner derived from (3.1) is also
effective in the thin regime, because (3.1) in this regime merges into the thin limit of FðT Þ.

The condition number of oFðT Þ=oT for situations of large time steps and large cross sections can be esti-
mated from the T derivative of (3.1) for these conditions. For large Dtn, the l.h.s. of (3.1) and the first term on
the r.h.s. of (3.1) can both be neglected. Furthermore, rgðT Þ~r�1

g � I in (3.1) when Dtn is large. Differentiating
(3.1) with these approximations yields
also found that ~r�1
g the one term Neumann approximation of H�1

g;d , leads to an effective preconditioner. This idea of approximating
ith a Neumann series was also used by Larsen et al. [20] to derive the asymptotic approximation of the continuous version of 2.2.
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oFðT Þ
oT

�
Xng

g¼1

D
1

3rgðT Þ
D

oBgðT Þ
oT

� D
orgðT Þ

oT

3r2
gðT Þ

DBgðT Þ
 !

:

If orgðT ÞoT=� r2
gðT Þ as rg(T)!1, then oFðT Þ=oT ! 0. Hence, oFðT Þ=oT is ill conditioned for large time

steps and large cross sections; an unpreconditioned iterative inversion of oFðT Þ=oT may stall for these
conditions.

To complete this section, let us uncover the nonlinear heat equation which is buried in (3.1); it was first
derived by Eddington [12] and later solved by Marshak [22]. Assuming the cross section is independent of fre-
quency, the sum with respect to g in (3.1) collapses. This follows because the ratio of cross sections
rgðT Þ~r�1

g � I for large cross sections, and the sum of the discrete Planckian over all groups can be approxi-
mated by the integral of the continuous Planckian over all frequencies to yield

P
g2BgðT Þ � acT 4, where a

is the radiation constant, and c is the speed of light. Taking these observations into account, (3.1) reduces
to the nonlinear heat equation of Eddington with an additional absorption term
CpðT Þ
T � T n

Dtn
¼ � 1

cDtn
I þ D

1

3~r
D

� �
acT 4 þ q̂:
4. Numerical results

The numerical results by the new method, which we call the photon free method (PFM), are compared to
the numerical results by the semi-implicit linear (SiL) method [18], which is preconditioned by Grey Transport
Acceleration [18] combined with Diffusion Synthetic Acceleration [2,4,8,17,24]. In both methods, the spatial
derivative is discretized by the simple corner balance approximation [1]. We compare the robustness, the accu-
racy, and the speed of the two methods on two test problems. The first is from Larsen’s seminal work on Grey
Transport Acceleration [18]. The second is from Su’s and Olson’s work [31] on the solution of a radiation
transport problem with a T3 heat capacity.

The PFM equations are solved with the Livermore’s nonlinear solver KINSOL [13], which is a Newton
solver with enhancements such as line-searching. A discussion of line searching is beyond the scope of this
paper; it is provided however in [16]. We also found that the temperature at the beginning of the time step
can be taken to be the initial guess in Newton’s method when the line-search option in KINSOL is turned
on.

4.1. Larsen’s test problem

This test problem is from Larsen’s paper on Grey Transport Acceleration [18]. We introduce this problem
with a description of the problem’s phase space grid. The frequency variable m is logarithmically spaced with
50 groups between hmmin = 10�5 keV and hmmax = 10 keV. Group g is defined by mg�1

2
6 m 6 mgþ1

2
, where
m1
2
¼ mmin; mgþ1

2
¼ mmax

mmin

� � 1
50

mg�1
2
:

The angular quadrature is the 20 point Gauss-Legendre approximation; this set has 5 times more angles than
the 4 point Gauss-Legendre set in Larsen’s paper. The time steps are constant 30 ps (1 ps = 10�12 s) incre-
ments. The spatial domain is divided into three regions which is described by the spatial mesh,
Dx ¼
:10 cm; 0 < x < 1;

:02 cm; 1 < x < 2;

:20 cm; 2 < x < 4:

8><
>:
We continue the introduction of Larsen’s test problem with a description of the problem’s physical
parameters. The cross section is a model for inverse Bremsstrahlung absorption, corrected for stimulated
emission,
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rðm; T ; xÞ ¼ cðxÞ 1� e�hm=kT

ðhmÞ3
;

where
cðxÞ ¼
1 keV3=cm; 0 < x < 1;

1000 keV3=cm; 1 < x < 2;

1 keV3=cm; 2 < x < 4:

8><
>:
We define rg(T) to be the group average of the above formula at the zone centers;
rgðT Þ �
1

mgþ1
2
� mg�1

2

Z m
gþ1

2

m
g�1

2

rðm; T ; xiÞdm:
The heat capacity Cp is the constant 5.109 · 1014 erg keV�1 cm�3.
We complete the introduction of Larsen’s test problem with a description of the problem’s energy sources.

The initial temperature is T(x, 0) = 10�3 keV, which is in equilibrium with the initial intensity
wg,d(x, 0) = Bg(T(x, 0)). No photons enters from the left boundary, but a steady, direction independent,
1 keV Planckian distribution of photons, wg,d(4 cm,t) = Bg(1 keV), enters from the right boundary. The exter-
nal heat source, q, and the external photon source, sg,d, are both zero.

Turning to mathematics, the theorem of [5] sets an upper bound and a lower bound for the temperature of
this problem. The upper bound is the largest temperature amongst the temperatures which specify the initial
conditions and the boundary conditions of this problem. These temperatures are the initial material temper-
ature T(x, 0) = 10�3 keV, the temperature of the Planckian distribution of the initial intensity wg,d(x, 0) =
Bg(T(x, 0)), the temperature of the Planckian distribution of photons on the right inflow boundary
wg,d(4 cm,t) = Bg(1 keV), and the temperature of 0 keV that characterizes the empty Planckian on the left
inflow boundary. The lower bound of the theorem is the smallest of these temperatures. The temperature
of this problem is therefore
0 keV 6 T ðx; tÞ 6 1 keV: ð4:1Þ

The robustness of a method can be defined by its ability to yield a solution that is within these limits. Let us

look at the robustness of the SiL and the PFM methods. Since the exact solution of this problem is unknown,
we define the ‘exact’ solution to be the solution, which is computed by the fully implicit PFM method on the
fine phase space grid, that has 2 times more spatial zones and 30 times smaller time steps than the phase space
grid, described in the beginning of this section. At the time of 600 ps, we plot in Fig. 1 the ‘exact’ solution, the
SiL solution, and the PFM solution. Both approximate solutions are, within discretization error, in agreement
with the ‘exact’ solution, and both are also within the bounds of (4.1). It took 54 s of computer time to com-
pute the SiL solution, and 110 s of computer time to compute the PFM solution.

Now let us look at the results as the time step is increased to 100 ps, 300 ps, and 600 ps. The SiL solutions,
computed with the time steps of 30, 100, and 300 ps, are plotted on the l.h.s. of Fig. 2. In the 100 ps time step
solution, although a slight oscillation appears at a point near x = 1.8 cm, this solution is within the bounds of
(4.1). However, the 300 ps time step solution is negative and is outside the limits of (4.1). The 600 ps time step
solution is not plotted in Fig. 2, because it is not within the scale of the figure; the peak temperature of the
600 ps time step solution is more than 18 times larger than the peak temperature of the 30 ps time step solu-
tion. Let us turn to the results by the PFM method, which are plotted on the r.h.s. of Fig. 2. The PFM results
are smoother than and more accurate than the SiL results.

The PFM method is more selective of a solution than the SiL method, because the PFM method screens a
solution with more accuracy tests than the SiL method. The difference making test, not in the SiL method’s
battery of tests, is administered at the outer step of Newton’s method. In this step, Newton’s method accepts
an iterate only if the nonlinear residual of the iterate is smaller than a prescribed tolerance. On the other hand,
the SiL method accepts a solution, which is untested by the nonlinear residual, Gðw; T Þ of (2.2), from which
the SiL equations are derived. The nonlinear residual is thus the gate-keeper in Newton’s method; it guards
against inaccurate solutions.
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However, this safeguard comes with a price; the cost to compute the nonlinear residual and its norm.
Although this cost is a fixed overhead in Newton’s method, we can minimize the total cost of Newton’s
method by lowering the cost of the linear update in Newton’s method with effective preconditioning of the
Jacobian. Let’s examine the third row in the upper half of Table 1 which shows the accelerating effect
of the heat conducting preconditioner. Each entry in the first three rows of the table contains two numbers;
the number to the left of the colon is a PFM result computed without preconditioning, and the number to the
right of the colon is the PFM result computed with preconditioning. Let us look at the worst case first, the
600 ps time step solution. This case, performed in 1 time step, required 161 GMRES iterations, but only
123 preconditioned GMRES iterations to be carried out. The effectiveness of the heat conducting precondi-
tioner improves dramatically with decreasing time step. In the calculations taken with 300 ps, 100 ps, and
30 ps time steps, GMRES need 50% fewer iterations to invert the Jacobian with preconditioning than without.

Now let us compare the run times of the two methods. The PFM method is clearly slower than the SiL
method for this problem, because the PFM method has more chores to do than the SiL method. The extra
tasks are: (1) to keep the coefficients Cp(T) and rg(T) current at temperature T, (2) to keep the Planckian
Bg(T) also current at temperature T, and (3) to compute the nonlinear residual and its norm. If the coefficients
are weak functions of temperature, as they are in this problem [18], then keeping them current with costly



Table 1
Iteration statistics of calculations for different time steps

Dt 30 (ps) 100 (ps) 300 (ps) 600 (ps)

PFM Runtime (s) 123:110 118:81 157:116 175:155
Nonlinear iterations 24:24 20:20 15:15 13:12
Total linear iterations 49:24 76:30 126:61 161:123

SIL Run time 54 24 7 2

The calculations, labeled by time step, are ordered by columns. The rows are the first is the total run times of the calculations, the second is
the total number of nonlinear iterations taken by Newton’s method, and the third is the total number of linear iterations taken by
GMRES. Each entry in the first three rows of the table contains two numbers: the number to the left of the colon is a result without
preconditioning, and the number to the right of the colon is the result with preconditioning.
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function evaluations is overkill. However, we cannot cut corners with the Planckian, because its nonlinearity is
an essential characteristic of (2.2). The nonlinear residual is also essential in Newton’s method for two reasons:
it is the r.h.s. of the linear update, and it is the metric by which we measure the accuracy of the PFM solution.
The cost to compute the nonlinear residual, which enables us to control the accuracy of the PFM solution, is
high, but is an expenditure that is well worth its cost.

4.2. The Problem of Su and Olson

The nonlinear system, solved analytically by Su and Olson [31], is the frequency integrated transport
equation,
1

c
o

ot
þ l

o

ox
þ r

� �
Iðl; x; tÞ ¼ 1

2
racT 4 þ 1

2
acH x� 1

2

� �
H

1

2
� x

� �
H

10

c
� t

� �
;

and the material equation,
4aT 3 oT
ot
¼
Z 1

�1

r Iðl; x; tÞ � 1

2
acT 4

� �
dl;
where H is the Heaviside function, a is the radiation constant, c is the speed of light, and
Iðl; x; tÞ �
Z 1

0

wðm; l; x; tÞdm:
The initial conditions are T(x, 0) = 0 and I(l, x, 0) = 0, and the boundary conditions are limx!±1 I(l, x, t) = 0.
We simulate this problem as follows: the angular integral is approximated by the 20 point Gauss-Legendre

quadrature. Since the problem is reflection symmetric, we solve the problem in the half space with the spatial
grid,
Dx ¼

:020; :0 < x < :1;

:100; :1 < x < :5;

:125; :5 < x < 1;

1:00; 1: < x < 35:

8>>><
>>>:
In the half space, no photons enters from the right boundary, and photons are reflected at the left boundary.
The spatial derivative is approximated by the simple corner balance method [1]. Since the PFM and the SiL
methods both cannot handle the singular perturbation caused by a vanishing heat capacity which occurs when
the temperature is 0, we modify the initial temperature to be .001 everywhere.

The spatial profiles of the fourth power of the material temperature, computed by the PFM method at 3
time points, are plotted on the l.h.s. of Fig. 3. The time points are .1, 1, and 10 in the units in which the speed
of light is 1. At these time points, we also plot the spatial profiles of the photon’s energy density on the r.h.s. of
Fig. 3. The profiles were calculated with a constant time step of .1/20, the largest time step with which we
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Fig. 3. The fourth power of the material temperature is on the left, and radiation energy density is on the right. It took the PFM method
less than 10 s of computer time to evolve the solution to the time point ct = .1 with a time step of cDt = .1/20.
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found reasonable agreement between them and the analytical solution. It took less than 10 s of computer time
to evolve the PFM solution to the first time point.

However, in order to calculate a solution of comparable accuracy, the SiL method requires a 200 times
smaller time step than the PFM method. As a consequence of the smaller time step, the SiL method needs
49 times more computer time to solve this problem than the PFM method. The SiL solution at time
ct = .1, which is plotted in Fig. 4, is less accurate than the PFM solution of the preceding figure. These results
show that the linearizing approximation and the lagging approximation of the SiL method are damaging sim-
plifications for this problem. However, the approximations of the SiL method, which were developed to deal
with the nonlinearities of radiation equations, are unnecessary for solving the equations of Su and Olson,
because the equations of Su and Olson are linear in the variables I and T4, and have constant coefficients.

We transform the equations of Su and Olson to these variables, and solve the transformed system by the
SiL method6 with a time step of cDt = .1/20, the time step by which the PFM solution plotted in the previous
figure is evolved, and with the initial condition T4(x, t = 0) = 10�6. The results of the transformed system,
labeled as T4 in Fig. 4, are comparable in accuracy to the PFM solution of the previous figure, and to the
SiL results of the untransformed system plotted in this figure. It also took the SiL method half as much time
to solve the transformed equations as it took the PFM method to solve the untransformed equations. The SiL
method performs better on the transformed equations than on the untransformed equations, because the set of
transformed equations is a linear system but the set of untransformed equations is not. In conclusion, the tests
in this section and in the previous section show that the lagging approximation and the linearizing approxi-
mation of the SiL method are simplifications which limit the time step that the SiL method can take
accurately.

5. Discussion

5.1. A comparison with the SiL approximation

In order to compare the PFM with conventional deterministic radiative transfer methods [3,18,26,28], we
shall derive the SiL equations which are solved by them. For the reader’s convenience, we move (2.2), the sys-
tem solved by the PFM, into (5.1) of this section
ðldDþ rgðT Þ þ ðcDtnÞ�1IÞwg;d ¼ rgðT ÞBgðT Þ þ sg;d þ ðcDtnÞ�1wn
g;d þ bg;d ;

CpðT Þ
T � T n

Dtn
¼
Xng

g¼1

Xnd

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:
ð5:1Þ
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Fig. 4. The fourth power of the material temperature is on the left, and radiation energy density is on the right. It took the SiL method
494 s of computer time to obtain the solution at ct = .1 with a time step of cDt = .1/4000. The solution, labeled by T4, is the result of
solving the system expressed in terms of the variables I and T4.
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While it is easy to eliminate wg,d from (5.1) since (5.1) is linear in wg,d, it is difficult to eliminate T from (5.1)
since (5.1) is nonlinear in T. In order to analytically eliminate T from (5.1), the SiL approximation makes two
approximations: it freezes the coefficients of (5.1) to their values at the beginning of the time step, and it
approximates the black body emission function with a linear function of temperature that is centered about
the beginning of the time step. We denote the frozen coefficients as
rn
g � rgðT nÞ; and Cn

p � CpðT nÞ; ð5:2Þ
and we denote the SiL’s linear model for the black body function as
BgðT Þ � Bn
g þ _Bn

gðT � T nÞ; where Bn
g � BgðT nÞ; and _Bn

g �
dBg

dT

����
T n

: ð5:3Þ
The substitution of (5.2) and (5.3) into (5.1) yields
ðldDþ rn
g þ ðcDtnÞ�1IÞwSiL

g;d ¼ rn
gðBn

g þ _Bn
gðT � T nÞÞ þ sg;d þ ðcDtnÞ�1wn

g;d þ bg;d ;

Cn
p

T � T n

Dtn
¼
Xng

g¼1

Xnd

d¼1

rn
gwdðwSiL

g;d � ðBn
g þ _Bn

gðT � T nÞÞÞ þ q:
ð5:4Þ
Since (5.4) is a linear system, we can solve the second equation of (5.4) for T � Tn and substitute the result into
the first equation of (5.4) to give the Schur complement of (5.4), which is the transport-like equation of the SiL
approximation of (5.1),
ðldDþ rn
g þ ðcDtnÞ�1IÞwSiL

g;d ¼ an
g

Xng

g0¼1

Xnd

d 0¼1

rn
g0wd 0w

SiL
g0 ;d 0 � an

g
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g0¼1

Xnd

d 0¼1

rn
g0wd 0B

n
g0 þ an

gqþ rn
gBn

g þ sg;d

þ ðcDtnÞ�1wn
g;d þ bg;d ; ð5:5Þ
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Conventional deterministic simulations [3,18,26,28] of continuum radiative transfer are obtained not by solv-
ing (5.1) but by solving (5.4)7.

6. Summary

In this paper, we showed that the solution to the equations of continuum radiation transport can be found
by searching in a space of much lower dimensionality than the space of the underlying transport equations.
The lower dimensional object of this search is the temperature, and is determined by a material-like equation,
which is derived by the elimination of the intensity variable from the primal system. The reduced system of
equations has the form of a nonlinear integral equation in which a nonlinear heat equation is buried. A pre-
conditioner to accelerate the inversion of the Jacobian of the reduced system is derived from the nonlinear heat
equation. The PFM method is the first method to solve the nonlinear equations of continuum radiation trans-
port with unfrozen coefficients. It is also the first method to solve the radiation equations through a subsidiary
set of equations which is free of photon variables.
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Appendix 1. A Matrix-free Jacobian-vector product

In this section, we drop the subscript k for the current iterate. A convenient starting point for the derivation
of the Jacobian of FðT Þ is the system
7 Me
restric
FðT Þ ¼ CpðT ÞðT � T nÞ �
Xng ;nd

g;d¼1

DtnrgðT Þwdðwg;dðT Þ � BgðT ÞÞ � qDtn;

Hg;dðT Þwg;dðT Þ ¼ rgðT ÞBgðT Þ þ f n
g;d ;

ð7:1Þ
where the second equation is (2.6). Differentiating the first equation of (7.1) gives
oF

oT
¼ oðCpðT ÞðT � T nÞÞ

oT
�
Xng ;nd

g;d¼1

Dtn
orgðT Þ

oT
wdðwg;dðT Þ � BgðT ÞÞ

�
Xng ;nd

g;d¼1

DtnrgðT Þwd
owg;dðT Þ

oT
� oBgðT Þ

oT

� �
:

It is straightforward to determine the partial derivatives of Cp(T), rg(T), and Bg(T), because each component
of these functions is a function of a single variable. On the other hand, it is more involved to determine the
partial derivative of wg;dðT Þ. Differentiating the second equation of (7.1) and solving the resulting equation for
owg,d(T)/oT, gives
owg;dðT Þ
oT

¼ H�1
g;d

oðrgðT ÞBgðT ÞÞ
oT

� oH g;dðT Þ
ot

wg;dðT Þ
� �

: ð7:2Þ
The calculation of oFðT Þ=oT requires the solutions of two transport equations. The first is to determine wg,d

and the second is to determine owg,d(T)/oT.
Since the Jacobian is a dense nx · nx matrix, where nx is the number of zones, then forming the Jacobian in a

simulation would be, because of its size, impractical for large scale simulations. Fortunately, the GMRES
thods [3] and [28] solve a simplification of (5.1) by iteration with an equation of the form of (5.4); their simulations are, however,
ted to frozen coefficients.
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method requires only the action of the Jacobian on an arbitrary, say z. The rest of this Appendix is devoted to
the derivation of a matrix-free formula for computing Jz.

We introduce notation for the components of the functions Cp(T), rg(T) and Bg(T) to facilitate the deriva-
tion. Each component of the diagonal matrix, Cp(T), for example, is a function of a single temperature. If
(Cp(T))i is the heat capacity of zone i, then it is a function of Ti, the temperature of zone i, and independent
of the temperature elsewhere. Therefore, we label the heat capacity of zone i by Ti, we write
ðCpðT ÞÞi � CpðT iÞ; the heat capacity of zone i:
Furthermore, the Jacobian of Cp(T) is the diagonal matrix
oCpðT Þ
oT

� �
i;j

� oðCpðT ÞÞi
oT j

¼
oCpðT iÞ

oT i
; i ¼ j

0; i 6¼ j

(
:

Similarly, since each component of rg(T) and of Bg(T), is a function of a single temperature, the Jacobians of
rg(T) and of Bg(T) are also diagonal matrices.

Component i of Jz can be written as:
ðJzÞi ¼
Xnx

j¼1

oðCpðT iÞðT i � T n
i ÞÞ

oT j
zj �

Xng ;nd ;nx

g;d;j¼1

Dtnwdðwi;g;d � BgðT iÞÞ
orgðT iÞ

oT j
zj

�
Xng ;nd ;nx

g;d ;j¼1

DtnrgðT iÞwd
owi;g;d

oT j
� oBgðT iÞ

oT j

� �
zj:
Since the Jacobians of Cp(T), rg(T) and Bg(T) are diagonal matrices, then the sums with respect to j, which
involve these Jacobians and the vector z, collapse to a single term. Collapsing these sums in the above equa-
tion, we have, after minor rearrangement,
ðJzÞi ¼
oðCpðT iÞðT i � T n

i ÞÞ
oT i

zi �
Xng ;nd

g;d¼1

Dtnwdðwi;g;d � BgðT iÞÞ
orgðT iÞ

oT i
zi þ

Xng ;nd

g;d¼1

DtnrgðT iÞwd
oBgðT iÞ

oT i
zi

�
Xng ;nd ;nx

g;d ;j¼1

DtnrgðT iÞwd
owi;g;d

oT j
zj:
It is straightforward to calculate the first three terms on the r.h.s. of the above equation. The sum with
respect to j in the last term of the above equation can be simplified. Substituting the r.h.s. of (7.2) for
owi,g,d/oTj, we have for this sum
Xnx

j¼1

owi;g;d

oT j
zj ¼

Xnx;nx

j;k¼1

ðH�1
g;dÞi;k

oðrgðT kÞBgðT kÞÞ
oT k

zj �
Xnx

l¼1

oðHg;dðT ÞÞk;l
oT k

wl;g;dzj

 !
: ð7:3Þ
With the exception of the partial derivatives of Hg,d(T), the formulas for the other terms on the r.h.s. have been
given already. Referring to (2.3), the elements of Hg,d(T), with the aid of the Kronecker delta, can be written as
(Hg,d(T))k,l = ldDk,l + rg(Tk)dk,l + (cDtn)�1dk,l. Thus, we have
oðHg;dðT ÞÞk;l
oT j

¼ orðT kÞ
oT j

dk;l dk;j ¼
orgðT kÞ

oT k
dk;j dk;l dk;j:
The last equality follows because org(Tk)/oTj is zero unless k = j. Using this result and the diagonality of the
Jacobians of rg(T) and Bg(T), the sums with respect to j and l on the r.h.s. (7.3) reduce to
Xnx

j¼1

owi;g;d

oT j
zj ¼

Xnx

k¼1

H�1
g;d

� �
i;k

oðrgðT kÞBgðT kÞÞ
oT k

zk �
orgðT kÞ

oT k
zkwk;g;d

� �
:

The above equation is a matrix-free formula for the action the Jacobian of wg,d on the vector z. It computed by
forming the source term, oðrgðT kÞBgðT kÞÞ

oT k
zk � orgðT kÞ

oT k
zkwk;g;d , and then following it up with a sweep by H�1

g;d .
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Collecting terms, the matrix-free formula for computing the action of oF=oT on the vector z is
ðJzÞi ¼
oðCpðT iÞðT i � T n

i ÞÞ
oT i

zi þ
Xng ;nd

g;d¼1

DtnrgðT iÞwd
oBgðT iÞ

oT i
zi �

Xng ;nd

g;d¼1
Dtnwd

orgðT iÞ
oT i

ziðwi;g;dðT Þ � BgðT iÞÞ

�
Xng ;nd ;nx

g;d ;k¼1

DtnrgðT iÞwd H�1
g;d

� �
i;k

oðrgðT kÞBgðT kÞÞ
oT k

zk �
orgðT kÞ

oT k
zkwk;g;d

� �
;

where wg,d(T) is determined by solving (2.6). This formula requires two sweeps for each group and each direc-
tion; the first is to get wg,d(T) and the second is to compute the last term in the formula.

Appendix 2. An initial guess for solving FðTÞ ¼ 0 by Newton’s method

The efficiency of Newton’s method can be improved with an initial guess which is close to the root of FðT Þ.
When the time step is large, the temperature at the old time step, Tn, can be far from the root of FðT Þ. How-
ever, we found that an initial guess, which is closer to T than Tn, can be obtained from an approximation of
FðT Þ which is easy to solve. To derive that approximation, we return to (2.2) and observe that D is a non-
diagonal matrix (and is the only non-diagonal matrix in the system of equations), which makes, FðT Þ ¼ 0,
difficult to solve. Approximating Dwg,d by Dwn

g;d , and putting Dwn
g;d on the r.h.s. of (2.2), the non-diagonality

of D is rendered a non-issue; another approximation for D is its diagonal. If Ha,g,d(T0) is the diagonal matrix,
H a;g;dðT 0Þ � rgðT 0Þ þ ðcDtnÞ�1I ;
and f n
a;g;d is the modified source term,
f n
a;g;d � sg;d þ ðcDtnÞ�1wn

g;d þ bg;d � ldDwn
g;d ;
of the transport equation for that approximation, then FaðT 0Þ, the approximation of FðT Þ for T0, can be
written as:
FaðT 0Þ � CpðT 0ÞðT 0 � T nÞ � qDtn �
Xngnd

g;d¼1

DtnrgðT 0ÞwdðH�1
a;g;dðT 0ÞðrgðT 0ÞBgðT 0Þ þ f n

a;g;dÞ � BgðT 0ÞÞ:
It is easy to solve FðT 0Þ ¼ 0, because FaðT 0Þ ¼ 0 is a set of single variable functions. The zero of a nonlinear
function of a single variable can be found easily by a multitude of failsafe methods, e.g. regula falsi, secant, etc.
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